
Treating the underlying cause of cystic fibrosis (CF) in patients 1 month and older

An overview of clinical trial data in patients with CF age 1 month to less than 24 months*

*Use of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated.

INDICATIONS AND USAGE

KALYDECO is indicated for the treatment of cystic fibrosis (CF) in patients age 1 month and older who have at least one mutation in the CFTR gene that is responsive to ivacaftor potentiation based on clinical and/or in vitro assay data.

If the patient's genotype is unknown, an FDA-cleared CF mutation test should be used to detect the presence of a CFTR mutation followed by verification with bi-directional sequencing when recommended by the mutation test instructions for use.

IMPORTANT SAFETY INFORMATION WARNINGS AND PRECAUTIONS

Transaminase (ALT or AST) Elevations

Elevated transaminases have been reported in patients with CF receiving KALYDECO. Transaminase elevations were more common in patients with a history of transaminase elevations or in patients who had abnormal transaminases at baseline. ALT and AST should be assessed prior to initiating KALYDECO, every 3 months during the first year of treatment, and annually thereafter. For patients with a history of transaminase elevations, consider more frequent monitoring of liver function tests

IMPORTANT SAFETY INFORMATION WARNINGS AND PRECAUTIONS

Transaminase (ALT or AST) Elevations

- Elevated transaminases have been reported in patients with CF receiving KALYDECO. Transaminase elevations were more common in patients with a history of transaminase elevations or in patients who had abnormal transaminases at baseline. ALT and AST should be assessed prior to initiating KALYDECO, every 3 months during the first year of treatment, and annually thereafter. For patients with a history of transaminase elevations, consider more frequent monitoring of liver function tests
- Patients who develop increased transaminase levels should be closely monitored until the abnormalities resolve. Dosing should be
 interrupted in patients with ALT or AST of greater than 5 times the upper limit of normal (ULN). Following resolution of transaminase
 elevations, consider the benefits and risks of resuming KALYDECO

Concomitant Use With CYP3A Inducers

• Use of KALYDECO with strong CYP3A inducers, such as rifampin, substantially decreases the exposure of ivacaftor, which may reduce the therapeutic effectiveness of KALYDECO. Co-administration of KALYDECO with strong CYP3A inducers, such as rifampin, rifabutin, phenobarbital, carbamazepine, phenytoin, and St. John's wort, is not recommended

Cataracts

• Cases of non-congenital lens opacities/cataracts have been reported in pediatric patients treated with KALYDECO. Baseline and follow-up ophthalmological examinations are recommended in pediatric patients initiating KALYDECO treatment

ADVERSE REACTIONS

Serious Adverse Reactions

• Serious adverse reactions, whether considered drug-related or not by the investigators, which occurred more frequently in patients treated with KALYDECO included abdominal pain, increased hepatic enzymes, and hypoglycemia

Most Common Adverse Reactions

- The most common adverse reactions in the 221 patients treated with KALYDECO were headache (17%), upper respiratory tract infection (16%), nasal congestion (16%), nausea (10%), rash (10%), rhinitis (6%), dizziness (5%), arthralgia (5%), and bacteria in sputum (5%)
- The safety profile for the CF patients enrolled in clinical trials (Trials 3-8) was similar to that observed in the 48-week, placebo-controlled trials (Trials 1 and 2)

USE IN SPECIFIC POPULATIONS

Pediatric Use

- The safety and effectiveness of KALYDECO in patients with CF younger than 1 month of age have not been established. The use of KALYDECO in children under the age of 1 month is not recommended
- Use of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated

Overview of KALYDECO in patients with CF age 1 month and older^a

PATIENTS AGE 1 MONTH TO LESS THAN 24 MONTHS

Phase 3, 24-week, open-label, single-arm study with multiple cohorts¹⁻³:

TRIAL 8 (ARRIVAL) 1 month to less than 4 months (n=7) **Genotype eligible: any ivacaftor-responsive mutation**

4 months to less than 6 months (n=6) 6 months to less than 12 months (n=11) 12 months to less than 24 months (n=19) Genotype eligible: 1 or more gating mutation or *R117H*

PATIENTS AGE 6 YEARS AND OLDER

TRIAL 2 (ENVISION) Phase 3, 48-week, randomized, double-blind, placebo-controlled study 6 to less than 12 years (N=52)⁵

Genotype eligible: 1 or more *G551D* mutation

TRIAL 4 (KONNECTION)

Phase 3, randomized, double-blind, placebo-controlled, 2-part crossover study (N=39)⁶

Genotype eligible: non-*G551D* gating mutation on at least one allele

TRIAL 5 (KONDUCT) Phase 3, 24-week, randomized, double-blind, placebo-controlled, parallel-group study (N=69)⁷

Genotype eligible: 1 or more R117H

PATIENTS AGE 2 YEARS THROUGH 5 YEARS

Phase 3, 24-week, open-label, single-arm study (N=34)⁴

Genotype eligible: gating mutation on at least one allele

PATIENTS AGE 12 YEARS AND OLDER

TRIAL 1 (STRIVE) Phase 3, 48-week, randomized, double-blind, placebo-controlled study (N=161)⁸

Genotype eligible: 1 or more *G551D* mutation

TRIAL 3 (DISCOVER) Phase 2, 16-week, randomized, double-blind, placebo-controlled, parallel-group study (N=140)^{1,9} **Genotype eligible: homozygous for the** *F508del* mutation

Phase 3, 8-week, randomized, double-blind, placebo-controlled crossover study (N=246)¹⁰ **Genotype eligible: heterozygous for the** *F508del-CFTR* mutations and a second mutation that results in residual *CFTR* function

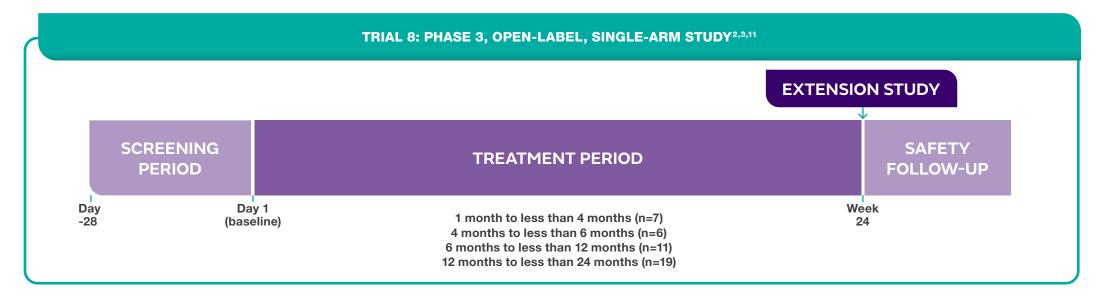
^aUse of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated.¹

CFTR mutations responsive to KALYDECO

	LIST OF CFTR	GENE MUTATION	IS THAT PRODUCE	CFTR PROTEIN AN	D ARE RESPONSIN	/E TO KALYDECO)1
A1067T	E56K	G178E	I175V	Q237E	R347H*	S549N*	Y1014C
A120T	E822K	G178R*	1807M	Q237H	R347L	S549R*	Y1032C
A234D	E831X*	G194R	K1060T	Q359R	R352Q*	S589N	2789+5G>A*
A349V	F1052V	G314E	L1480P	R1070Q	R553Q	S737F	3272-26A>G*
A455E*	F1074L	G551D*	L206W*	R1070W*	R668C	S945L*	3849+10kbC>7
D110E	F311del	G551S*	L320V	R1162L	R74W	S977F*	711+3A>G*
D110H	F311L	G576A	L967S	R117C*	R75Q	T1053I	
D1152H*	F508C	G970D	L997F	R117G	R792G	T338I	
D1270N	F508C;S1251N [†]	H1375P	M152V	R117H*	R933G	V1293G	
D192G	G1069R	H939R	M952I	R117L	S1159F	V232D	
D579G*	G1244E*	I1027T	M952T	R117P	S1159P	V562I	
D924N	G1249R	l1139V	P67L*	R1283M	S1251N*	V754M	
E193K	G1349D*	I148T	Q1291R	R170H	S1255P*	W1282R	

^{*}Clinical data exist for these mutations.1

IMPORTANT SAFETY INFORMATION (cont'd) WARNINGS AND PRECAUTIONS (cont'd)


Transaminase (ALT or AST) Elevations (cont'd)

Patients who develop increased transaminase levels should be closely monitored until the abnormalities resolve.
 Dosing should be interrupted in patients with ALT or AST of greater than 5 times the upper limit of normal (ULN).
 Following resolution of transaminase elevations, consider the benefits and risks of resuming KALYDECO

[†]Complex/compound mutations where a single allele of the *CFTR* gene has multiple mutations; these exist independent of the presence of mutations on the other allele.¹ CFTR, cystic fibrosis transmembrane conductance regulator.

Trial 8 (ARRIVAL): Patients with CF age 1 month to less than 24 months KALYDECO was studied in patients as young as 1 month^a

Primary endpoint^{2,3,12}

• Safety, assessed by adverse events (AEs) and clinical laboratory assessments

Select secondary endpoint^{2,3,12}

Absolute change from baseline in sweat chloride level at Week 24

Key inclusion criteriab

- Patients with a gating mutation or *R117H* mutation were eligible for the 4 to less than 6 months^c, 6 to less than 12 months, and 12 to less than 24 months cohorts of the study cited above¹¹
- Patients with 1 or more ivacaftor-responsive mutations were eligible for the cohort of patients age 1 to less than 4 months^{1c}
- Confirmed CF diagnosis¹¹
- Body weight ≥3 kg at screening¹

aUse of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated.¹
bSelected exclusion criteria included an acute upper or lower respiratory infection, pulmonary exacerbation, or changes in therapy (including antibiotics) for pulmonary disease within 4 weeks before Day 1; abnormal liver function at screening or any prior history of clinically relevant elevated >2x upper limit of normal (ULN) aspartate aminotransferase (AST), alanine aminotransferase (ALT), or bilirubin (excluding newborn hyperbilirubinemia); history of solid organ or hematological transplantation.¹¹
cIncluded gestational age ≥38 weeks.¹¹¹.¹²

Trial 8 (ARRIVAL): Patients with CF age 1 month to less than 24 months KALYDECO was studied in patients as young as 1 month^a (cont'd)

INTERRUPTIONS, DISCONTINUATIONS, AND SERIOUS ADVERSE EVENTS (AEs)

PRIMARY ENDPOINT

1-<4 months (n=7)¹

• 1 patient discontinued treatment due to transaminase elevations

4-<6 months (n=6)¹³

- 1 patient experienced a serious AE (bronchiolitis) considered unlikely related to trial drug
- 0 patients interrupted or discontinued treatment due to AEs

6-<12 months (n=11)¹⁴

- 3 patients experienced serious AEs (1 with viral respiratory tract infection, 1 with viral rash, and 1 with cough)
- 1 patient interrupted treatment due to eczema
- 0 patients discontinued treatment due to AEs

12-<24 months (n=19)³

- 1 patient withdrew due to difficulty with blood draws
- 2 patients experienced serious AEs
 (1 with constipation, DIOS, and eczema herpeticum and 1 with persistent cough)
- The serious AE of constipation was considered possibly related to KALYDECO treatment by the investigator
- The patient with persistent cough required hospitalization for 2 weeks and treatment with intravenous antibiotics

The safety profile of patients in this trial was similar to that observed in patients age 2 years and older.

Please <u>click here</u> to see adverse events and additional safety information.

^aUse of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated.¹ AE, adverse event; DIOS, distal intestinal obstruction syndrome.

Trial 8 (ARRIVAL): Patients with CF age 1 month to less than 24 months KALYDECO was studied in patients as young as 1 month^a (cont'd)

Transaminase elevations

MAXIMUM ELEVATIONS OF TRANSAMINASE ELEVATIONS IN FOUR TRIAL 8 COHORTS¹ **PRIMARY ENDPOINT** 1 TO LESS THAN **4 TO LESS THAN 6 TO LESS THAN 12 TO LESS THAN ELEVATED ALT OR AST** 12 MONTHS, n/N (%) 24 MONTHS, n/N (%) 4 MONTHS, n/N (%) 6 MONTHS, n/N (%) >3-<5x UI N 0/7 (0.0) 0/6 (0.0) 1/11 (9.1) 5/18 (27.8) >5-≤8x ULN 0/7 (0.0) 0/6 (0.0) 0/11 (0.0) 2/18 (11.1) >8x ULN 1/7 (14.3) 0/6 (0.0) 0/11 (0.0) 2/18 (11.1)

PRIMARY ENDPOINT TREATMENT DISCONTINUATIONS AND INTERRUPTIONS DUE TO TRANSAMINASE ELEVATIONS 4-<6 1-<4 • 1 patient discontinued treatment due to • 0 patients interrupted or discontinued treatment months months transaminase elevations due to transaminase elevations $(n=6)^{15}$ $(n=7)^{1}$ • 0 patients discontinued treatment due to 6-<12 12-<24 transaminase elevations • 0 patients interrupted or discontinued months months - 2 patients interrupted treatment due to transaminase treatment due to transaminase elevations (n=11)15 $(n=19)^3$ elevations (>8x ULN). Both patients resumed treatment with no further elevations in Trial 8

^aUse of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated.¹

Trial 8 (ARRIVAL): Patients with CF age 1 month to less than 24 months KALYDECO pharmacodynamic results

Reductions in sweat chloride concentrations were observed across all cohorts

SECONDARY ENDPOINT MEAN ABSOLUTE CHANGE FROM BASELINE IN SWEAT CHLORIDE CONCENTRATION¹ Patients age 1 Patients age 4 mmol/L to <4 months (n=5) to <6 months (n=3) AT WEEK 24 (95% CI -76.6, -4.1) (95% CI: -93.1, -6.9) **-73.5** Patients age 6 Patients age 12 to <12 months (n=6) to <24 months (n=10) AT WEEK 24 (95% CI: -75.9, -41.3) (95% CI: -86.0, -61.0)

There was no direct correlation between decrease in sweat chloride levels and improvement in lung function (FEV,)1

IMPORTANT SAFETY INFORMATION (cont'd) WARNINGS AND PRECAUTIONS (cont'd)

Concomitant Use With CYP3A Inducers

• Use of KALYDECO with strong CYP3A inducers, such as rifampin, substantially decreases the exposure of ivacaftor, which may reduce the therapeutic effectiveness of KALYDECO. Co-administration of KALYDECO with strong CYP3A inducers, such as rifampin, rifabutin, phenobarbital, carbamazepine, phenytoin, and St. John's wort, is not recommended

^aCalculated from children with data available at both baseline and Week 24.² CI, confidence interval.

Trial 1: Patients with CF age 12 years and older (N=161)

Trial 2: Patients with CF age 6 to less than 12 years old (N=52)

KALYDECO was evaluated in patients age 6 years and older with CF

STUDIES OF KALYDECO IN PATIENTS AGE 6 YEARS AND OLDER¹

TRIALS 1 AND 2^a

Phase 3, randomized, double-blind, placebo-controlled studies

48-WEEK TREATMENT

KALYDECO 150 mg q12h (n=109)

> PLACEBO (n=104)

• All patients in Trials 1 and 2 remained on currently prescribed CF therapies¹

Primary endpoint¹

 Improvement in lung function as determined by the mean absolute change from baseline in percent predicted pre-dose FEV, through 24 weeks of treatment (Trials 1 and 2)

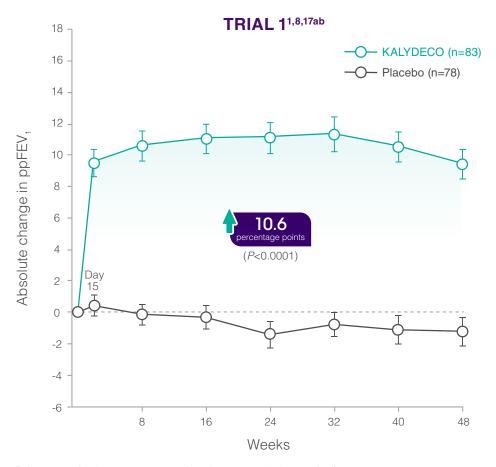
Selected secondary endpoints^{1b}

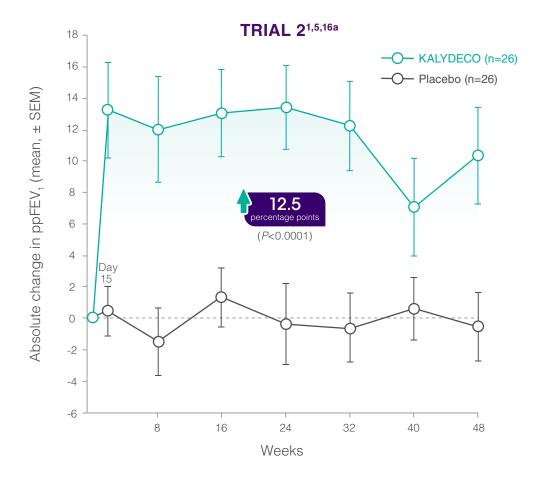
- Absolute change from baseline in sweat chloride
- Absolute change from baseline in weight
- Improvement from baseline in CFQ-R respiratory domain score

Key inclusion criteria¹

- ppFEV, between 40 and 90 at screening (Trial 1)
- ppFEV, between 40 and 105 at screening (Trial 2)

Key exclusion criteria¹


- Persistent Burkholderia cenocepacia, Burkholderia dolosa, or Mycobacterium abscessus isolated from sputum at screening
- Abnormal liver function defined as ≥3 liver function tests (ALT, AST, AP, GGT, total bilirubin) ≥3x ULN


^bFor Trials 1 and 2, selected secondary endpoints were assessed through/at Week 24 and Week 48.¹
ALT, alanine aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; CFQ-R, Cystic Fibrosis Questionnaire-Revised; GGT, gamma-glutamyl transferase; ppFEV₁, percent predicted forced expiratory volume in 1 second; q12h, every 12 hours; ULN, upper limit of normal.

^aTrial 1 evaluated 161 patients with CF who were age 12 years and older who had the *G551D* mutation. Trial 2 evaluated 52 patients with CF who were age 6 to 11 years who had the *G551D* mutation. Eligible patients were rolled over into an open-label Extension Study.¹

Treatment with KALYDECO resulted in a significant improvement in FEV₁1,5,8,16,17</sup>

....

IMPORTANT SAFETY INFORMATION (cont'd) WARNINGS AND PRECAUTIONS (cont'd)

Cataracts

 Cases of non-congenital lens opacities/cataracts have been reported in pediatric patients treated with KALYDECO. Baseline and follow-up ophthalmological examinations are recommended in pediatric patients initiating KALYDECO treatment

^aPrimary endpoint was assessed at the 24-week time point.¹

^bThe 95% confidence intervals are indicated by the I bars. SEM, standard error of mean.

Overall KALYDECO safety profile established in clinical trials

The overall safety profile for KALYDECO is based on Trials 1, 2, and 31ab

- The overall safety profile for KALYDECO is based on pooled data from 3 placebo-controlled clinical trials conducted in 353 patients with CF age 6 years and older who had a *G551D* mutation in the *CFTR* gene (Trials 1 and 2) or who were homozygous for the *F508del* mutation (Trial 3)
- KALYDECO is not indicated in patients with CF who are homozygous for the *F508del* mutation

Pooled safety data from Trials 1, 2, and 3^{1ab}

- The proportion of patients who prematurely discontinued study drug due to adverse events was 2% for patients treated with KALYDECO and 5% for patients given placebo
 - Serious adverse events that occurred more frequently in patients treated with KALYDECO included:

ABDOMINAL PAIN

INCREASED HEPATIC ENZYMES

HYPOGLYCEMIA

• The most common adverse events in patients treated with KALYDECO in Trials 1, 2, and 3 (n=221) were headache (17%), upper respiratory tract infection (16%), nasal congestion (16%), nausea (10%), rash (10%), rhinitis (6%), dizziness (5%), arthralgia (5%), and bacteria in sputum (5%)

Most common adverse events in Trials 1 and 21a

MOST COMMON ADVERSE EVENTS (≥8%) IN PATIENTS WITH A G551D MUTATION TREATED WITH KALYDECO AND HIGHER THAN PLACEBO¹

ADVERSE REACTION (PREFERRED TERM)	KALYDECO (n=109), n (%)	PLACEBO (n=104), n (%)
Headache	26 (24)	17 (16)
Oropharyngeal pain	24 (22)	19 (18)
Upper respiratory tract infection	24 (22)	14 (14)
Nasal congestion	22 (20)	16 (15)
Abdominal pain	17 (16)	13 (13)
Nasopharyngitis	16 (15)	12 (12)
Diarrhea	14 (13)	10 (10)
Rash	14 (13)	7 (7)
Nausea	13 (12)	11 (11)
Dizziness	10 (9)	1 (1)

 The safety profile for the patients with CF enrolled in the other clinical trials was similar to that observed in the 48-week, placebo-controlled Trials 1 and 2^{1a}

^aTrials 1 and 2 were 48-week, Phase 3, randomized, double-blind, placebo-controlled trials in 213 patients with a *G551D* mutation. Trial 1 patients were age 12 years and older; Trial 2 patients were age 6 to 11 years.¹

^bTrial 3 was a 16-week, Phase 2, randomized, double-blind, placebo-controlled, parallel-group trial in 140 patients with CF age 12 years and older who were homozygous for the *F508del* mutation. KALYDECO is not indicated in patients with CF who are homozygous for the *F508del* mutation in the *CFTR* gene.^{1,9}

Overall KALYDECO safety profile established in clinical trials (cont'd)

Transaminase elevations in patients age 6 years and older^{1ab}

- In Trials 1, 2 and 3, the incidence of maximum transaminase (ALT or AST) >8, >5, or >3x ULN was 2%, 2%, and 6% in patients treated with KALYDECO and 2%, 2%, and 8% in patients given placebo, respectively
- The proportion of patients who permanently discontinued treatment for elevated transaminases, all >8x ULN, was 0.5% for patients treated with KALYDECO and 2% for patients given placebo
- 2 patients treated with KALYDECO were reported to have serious adverse events of elevated liver transaminases compared with none on placebo
- Transaminase elevations were more common in patients with a history of transaminase elevations

Transaminase elevations in patients age 1 month to less than 6 years^{1cd}

- In Trial 6, the incidence of patients experiencing transaminase elevations (ALT or AST) >3x ULN was 14.7% (5/34). All 5 patients had maximum ALT or AST levels >8x ULN that returned to baseline levels following interruption of KALYDECO dosing
 - Transaminase elevations were more common in patients who had abnormal transaminases at baseline
 - One patient permanently discontinued treatment with KALYDECO due to transaminase elevations
- In Trial 8, 1 patient (14.3%) from the cohort of patients age 1 to less than 4 months (n=7) had maximum ALT >8x ULN and maximum AST of >3 to ≤5x ULN; the subject discontinued ivacaftor treatment. In the cohort of patients age 4 to less than 6 months (n=6), no patients experienced transaminase elevations. In the cohort of patients age 6 to less than 12 months (n=11), 1 patient (9.1%) had elevated ALT of >3 to ≤5x ULN. The incidence of patients experiencing ALT or AST >3, >5, and >8x ULN in the cohort of patients age 12 to less than 24 months (n=19) was 5 (27.8%), 2 (11.1%), and 2 (11.1%), respectively

Transaminase elevation monitoring¹

• ALT and AST should be assessed prior to initiating KALYDECO, every 3 months during the first year of treatment, and annually thereafter. For patients with a history of transaminase elevations, consider more frequent monitoring of liver function tests. Patients who develop increased transaminase levels should be closely monitored until the abnormalities resolve

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ULN, upper limit of normal.

^aTrials 1 and 2 were 48-week, Phase 3, randomized, double-blind, placebo-controlled trials in 213 patients with a *G551D* mutation. Trial 1 patients were age 12 years and older; Trial 2 patients were age 6 to 11 years.¹

^bTrial 3 was a 16-week, Phase 2, randomized, double-blind, placebo-controlled, parallel-group trial in 140 patients with CF age 12 years and older who were homozygous for the *F508del* mutation. KALYDECO is not effective in patients with CF who are homozygous for the *F508del* mutation in the *CFTR* gene.^{1,9}

[°]Trial 6 was a 24-week, Phase 3, open-label trial in 34 patients. Patients were eligible if they had a G551D, G1244E, G1349D, G178R, G551S, G970R, S1251N, S1255P, S549N, or S549R mutation. Of the 34 patients enrolled, 32 had a G551D mutation and 2 had a S549N mutation. Trial 6 patients were age 2 to less than 6 years. 1,4

^dTrial 8 was a 24-week, Phase 3, open-label trial in a cohort of 19 patients age 12 months to less than 24 months, a cohort of 11 patients age 6 months to less than 12 months, and a cohort of 6 patients age 4 months to less than 6 months who could have a *G551D*, *G1244E*, *G1349D*, *G178R*, *G551S*, *R117H* (eligible for this study only in the United States), *S1251N*, *S1255P*, *S549N*, or *S549R* mutation, as well as a cohort of 7 patients age 1 month to less than 4 months who had ivacaftor-responsive mutations.^{1,12}

Recommended dosing for KALYDECO¹

FOR PATIENTS AGE 1 TO LESS THAN 2 MONTHS

• ≥3 kg^a: One 5.8-mg granules packet every 12 hours

FOR PATIENTS AGE 2 TO LESS THAN 4 MONTHS

 ≥3 kg^a: One 13.4-mg granules packet every 12 hours

FOR PATIENTS AGE 4 TO LESS THAN 6 MONTHS

• ≥5 kg^b: One 25-mg granules packet every 12 hours

Each dose of KALYDECO should be administered just before or just after fat-containing food

FOR PATIENTS AGE 6 MONTHS TO LESS THAN 6 YEARS

• 5 kg to <7 kgb: One 25-mg granules packet every 12 hours

• 7 kg to <14 kg°: One 50-mg granules packet every 12 hours

• ≥14 kg^d: One 75-mg granules packet every 12 hours

FOR PATIENTS AGE 6 YEARS AND OLDER

One 150-mg tablet every 12 hours

Granules and tablets pictured above are not actual size.

Patients should continue taking all of their prescribed CF therapies with KALYDECO1

- The safety and efficacy of KALYDECO for patients age less than 1 month have not been established. The use of KALYDECO in children less than 1 month is not recommended¹
- Use of KALYDECO in patients age 1 to less than 6 months born at a gestational age less than 37 weeks has not been evaluated
- KALYDECO is not recommended for use in children age 1 month to less than 6 months with any level of hepatic impairment and/or taking concomitant moderate or strong CYP3A inhibitors¹

 $a \ge 3$ kg ≈ ≥7 lb.

 b 5 kg to <7 kg ≈ 11 lb to <15 lb.

°7 kg to <14 kg \approx 15 lb to <31 lb.

d≥14 kg ≈ ≥31 lb.

How to administer KALYDECO oral granules: 3 steps

PREPARATION¹

- Caregiver should hold the packet with the cut line on top, shake the packet gently to settle the granules, and tear or cut the packet open along the cut line
- Caregiver should mix all granules into 1 teaspoon (5 mL) of soft food or liquid
- Food or liquid should be at or below room temperature

EXAMPLES OF SOFT FOODS AND LIQUIDS TO MIX WITH KALYDECO GRANULES FOR CHILDREN:

- Breast milk or infant formula
- Applesauce
- Water

- Puréed vegetables or fruits
- Milk or yogurt
- Juice

Note: Examples of soft foods or liquids include:

- After mixing granules, caregiver should give the dose within 1 hour
- Caregiver should make sure the child finishes the dose completely

3

GIVE WITH FAT-CONTAINING FOOD¹

• Food that contains fat must be taken just before or just after the oral granules dose

EXAMPLES OF FAT-CONTAINING FOODS FOR CHILDREN:

- Breast milk or infant formula
- Yogurt^a
- Cheese pizza^a

- Cheese^a
- Whole milkPeanut butter
- Butter
- Eggs

Avoid foods and drinks that contain grapefruit, as these may affect the amount of KALYDECO in the body.¹

Keep your patients' age in mind when recommending fat-containing foods to caregivers.

^aBe sure that cheeses and yogurts are made with whole milk.¹

It is important that patients consume the entire oral granules mixture with each dose1

Dosage adjustments for KALYDECO

KALYDECO DOSAGE ADJUSTMENTS ¹						
DOSAGE ADJUSTMENTS FOR PATIENTS AGE 1 TO LESS THAN 6 MONTHS	DOSE AND ADMINISTRATION FREQUENCY					
HEPATIC IMPAIRMENT						
<u>Any</u> impairment	Use is not recommended					
CYP3A INHIBITORS						
Co-administration with <u>strong</u> or <u>moderate</u> CYP3A inhibitors ^{ab}	Concomitant use is not recommended					
DOSAGE ADJUSTMENTS FOR PATIENTS AGE ≥6 MONTHS						
HEPATIC IMPAIRMENT						
Severe impairment (Child-Pugh Class C)	Use with caution after weighing the risks and benefits of treatment. One dose once daily, or less frequently ^c					
Moderate impairment (Child-Pugh Class B)	One dose once daily ^c					
Mild impairment (Child-Pugh Class A)	No dose adjustment required					
CYP3A INHIBITORS						
Co-administration with strong CYP3A inhibitors ^a	One dose twice a week ^c					
Co-administration with moderate CYP3A inhibitors ^b	One dose once daily ^c					

Missed dose of oral granules¹

- If ≤6 hours have passed: Advise caregivers to administer the dose with fat-containing food
- If >6 hours have passed: Advise caregivers to skip administration of that dose and resume the normal schedule for the following dose. A double dose should NOT be taken to make up for the forgotten dose

^aUse of KALYDECO with a strong CYP3A inhibitor significantly increased ivacaftor exposure. Examples include ketoconazole, itraconazole, posaconazole, voriconazole, telithromycin, and clarithromycin. ^bUse of KALYDECO with a moderate CYP3A inhibitor increased ivacaftor exposure. Examples include fluconazole and erythromycin. Avoid foods and drinks that contain grapefruit, as these may affect the amount of KALYDECO in the body.¹

Use of KALYDECO with strong CYP3A inducers significantly decreases the exposure of ivacaftor. Co-administration of KALYDECO with strong CYP3A inducers, such as rifampin, rifabutin, phenobarbital, carbamazepine, phenytoin, and St John's wort, is not recommended.¹

°For patients age 6 years and older, one dose is one tablet. For patients age 1 month to less than 6 years, one dose is one weight-based packet of oral granules.¹

References: 1. KALYDECO [prescribing information]. Boston, MA: Vertex Pharmaceuticals Incorporated; May 2023. 2. Davies JC, Wainwright CE, Sawicki GS, et al; ARRIVAL Study Group. Ivacaftor in Infants aged 4 to <12 months with cystic fibrosis and a gating mutation: results of a two-part phase 3 clinical trial. Am J Respir Crit Care Med. 2021;203(5):585-593. doi:10.1164/rccm.202008-3177OC 3. Rosenfeld M, Wainwright CE, Higgins M, et al; ARRIVAL Study Group. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018;6(7):545-553. doi:10.1016/S2213-2600(18)30202-9 4. Davies JC, Cunningham S, Harris WT, et al; KIWI Study Group. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107-115. doi:10.1016/S2213-2600(15)00545-7 5. Davies JC, Wainwright CE, Canny GJ, et al; VX08-770-103 (ENVISION) Study Group. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219-1225. doi:10.1164/rccm.201301-0153OC 6. De Boeck K, Munck A, Walker S, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13(6):674-680. doi:10.1016/j.jcf.2014.09.005 7. Moss RB, Flume PA, Elborn JS, et al; VX11-770-110 (KONDUCT) Study Group. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir Med. 2015;3(7):524-533. doi:10.1016/S2213-2600(15)00201-5 8. Ramsey BW, Davies J, McElvaney NG, et al; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672. doi:10.1056/NEJMoa1105185 9. Study of ivacaftor in cystic fibrosis subjects aged 12 years and older homozygous for the F508del-CFTR mutation (DISCOVER), ClinicalTrials.gov identifier: NCT00953706, Updated September 11, 2015, Accessed May 2, 2023, https://www.clinicaltrials.gov/ct2/show/NCT00953706 10. Rowe SM, Daines C, Ringshausen FC, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377(21):2024-2035. doi:10.1056/NEJMoa1709847 11. Rosenfeld M, Wainwright CE, Higgins M, et al; ARRIVAL Study Group. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Supplementary appendix. Lancet Respir Med. 2018;6(7):545-553. doi:10.1016/S2213-2600(18)30202-9 12. A study to evaluate the safety, pharmacokinetics, and pharmacodynamics of ivacaftor in subjects with cystic fibrosis who are less than 24 months of age and have an ivacaftor-responsive CFTR mutation. ClinicalTrials.gov identifier: NCT02725567. Updated December 8, 2022. Accessed May 2, 2023. https://www.clinicaltrials.gov/ct2/show/NCT02725567 13. Rosenfeld M, Sawicki GS, Higgins M, et al; ARRIVAL Study Group. Ivacaftor in 4- to <6-month-old infants with cystic fibrosis and a gating mutation: results of a 2-part, single-arm, phase 3 study. Poster presented at: 34th Annual North American Cystic Fibrosis Conference (virtual); October 7-23, 2020. 14. Davies JC, Wang LT, Campbell D, et al. Ivacaftor treatment in patients 6 to <12 months old with a CFTR gating mutation: results of a phase 3, two-part, single-arm study. Poster presented at: 32nd Annual North American Cystic Fibrosis Conference; October 18-20, 2018; Denver, CO. 15. Davies JC, Wainwright CE, Sawicki GS, et al; ARRIVAL Study Group. Ivacaftor in infants aged 4 to <12 months with cystic fibrosis and a gating mutation: results of a two-part phase 3 clinical trial. Online data supplement. Am J Respir Crit Care Med. 2021;203(5):585-593. Accessed May 2, 2023. https://www.atsjournals.org/doi/ suppl/10.1164/rccm.202008-31770C/suppl_file/davies_data_supplement.pdf 16. Davies JC, Wainwright CE, Canny GJ, et al; VX08-770-103 (ENVISION) Study Group. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Supplementary appendix. Am J Respir Crit Care Med. 2013;187(11):1219-1225. Accessed May 2, 2023. https://www.atsjournals.org/doi/suppl/10.1164/rccm.201301-0153OC/suppl file/davies data supplement.pdf 17. Ramsey BW, Davies J, McElvaney NG, et al; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. Supplementary appendix. N Engl J Med. 2011;365(18):1663-1672. Accessed May 2, 2023. https://www.nejm.org/doi/suppl/10.1056/NEJMoa1105185/suppl_file/nejmoa1105185_appendix.pdf

